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Abstract

A structure which is important as an example of a spatially periodic medium for microwave propagation is

analyzed theoretically, with rigorous consideration of its partial dielectric composition, translation and

reflection symmetry properties, and field configuration relating to its use for electron-wave interaction.

Introduction

The passage of electromagnetic radiation through

spatially periodic media arises in a variety of physical

situations, including some as widely diverse as X- ray

and particle diffraction by crystals, transmission

and reception by microwave array antennas, optical

integrated circuits, and radio-frequency filtering.

From consideration of the symmetry properties of

the medium and the logical consequences of this, it

is possible to deduce certain qualitatively distinctive

features, such as the existence of stop-bands,

properties of the dispersion function, and angular

diffraction lobe patterns. For most applications,

the generation of useful design information and the

realistic comparison of theoretical and experimental

results are possible only if the boundary-value

problems involved can be solved in a substantially

rigorous manner. With the aid of symmetry

principles the problems can be reduced to that of

field analysis in a single unit cell of the periodic

medium. This reduced problem may be itself a

rather formidable task, and the value of the results

depends on the recognition of significant structural

parameters. Various simplified versions of the

slow-wave structure for vacuum-tube crossed-field

amplifiers have been treated in the microwave
~iteraturel , 2

Determination of Propagation Parameters

The periodic propagation medium contemplated

in the present paper is a printed-circuit configuration

to be used as a slow-wave structure in a micrwoave

vacuum-tube crossed-field amplifier (C FA). The

example presented is that of a meander-line circuit

on a dielectric substrate, although it will be seen

that the method employed is applicable to a

considerable range of slow-wave circuit embodiments,

including ladder-lines and inter digital lines among

others. The treatment incorporates a number of

analytical details which are pertinent to its value for

the accurate investigation of the electron-wave

interaction on which the action of the amplifier

depends. Among these are: the determination of the

relative concentration of the microwave field in the

dielectric substrate below and the vacuum above the

slow-wave circuit, and the consequent dispersive
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effects; detailed analysis of the microwave electric

field in the electron interaction region, leading to

determination of the space-harmonic amplitudes and

realistic evaluation of an electron-wave interaction

impedance. The method permits the use of finite-

difference techniques or other numerical analyses of

the potential in complicated composite structures,

as well as the use of numerically or experimentally

determined susceptances associate with structural

details such as edges, corners, steps, slots, and

bars made of conducting or dielectric materials.

We take the unit cell to contain one complete

meander, as indicated in Fig. 1. From the symmetry

of the cell and periodicity of the design we can deduce

the possible forms of the solutions. Specifically,

there must exist basis wave functions, representing

normal modes of propagation on the array of Fig. 2,

characterized by a phase factor expressing a

constant phase increment q per unit cell, and by a

factor possessing even or odd symmetry, respectively,

with respect to reflection in the central xy-plane of

the unit cell. Employing a technique which has

previously been used successfully 3 for micro strip

analyses, we define a Greenis function, representing

the potential due to a symmetrical combination of

elementary substrips. At this stage the boundary

conditions at the conducting ground plane and at the

dielectric-vacuum interface are imposed. If the

structure ,includes an upper ground plane (or “sole”

in the case of the crossed-field amplifier), such

a feature is also represented at this stage. The

individual substrips are chosen to be sufficiently

narrow that the excitation (visualized as a complex

charge or current of unit amplitude) may be taken to

be uniform over their cross-sections. In the simplest

designs, in which the surface of the dielectric

substrate is flat and the conducting meander line is

of negligible thickness, the Greents function may be

formulated as a Fourier series. We now use this

function as a kernel to solve the boundary-value

problem for the actual strip configuration. Imposition

of the remaining boundary condition for the normal

modes, namely that the meander line strips are

equipotential, leads to determination of the charge

and current profiles on the strips. In this way we

obtain the potential and the charge distribution, hence

the capacitance, effective dielectric constant (Fig. 3),

and characteristic impedance 20 as functiOns of ~>

for the normal modes of each symmetry type. A

significant new feature in this formulation is the

determination of the difference in propagation

velocities for nor&al modes of the two different

symmetries. Such an effect is to be expected, of



course, because of the variation with phase q and

with symmetry type of the field distribution in the

dielectric and vacuum. This phenomenon, which

has apparently not been treated analytically before,

results in the appearance of new stop-band features,

in addition to its influence in determining dispersive

effects.

Imposition of simple bo&dary conditions on the

voltages and currents on the connecting links at the

sides of the meander line leads to the determination

of a characteristic equation; VIZ. ,

( )1
ztan2$ = J!_

tan klA/2 tan k2A/2

z
02

cot klA/2 cot k2A/2

where kl and k2 are the normal-mode propagation

constants for the two symmetry types. The solution,

namely the dispersion diagram, is shown in Fig. 4.

The input impedance (Fig. 5), interaction impedances

and other details can then be determined.

Results obtained to date show very good agreement

with experimental data obtained at this laboratory,

as illustrated by the experimental points shown in J

Fig. 4.

The Interaction Impedance

Interaction between the microwave field and an

electron beam flowing above the surface is

customarily expressed through an interaction

impedance, or coupling impedance Zint) which

measures the strength of the amplifying action (per

“unit power of the microwave signal). A useful

definition of Zint is

(Zint) m = ~ Im (EY E’l)m

where E
Y

and Ez are the components of the microwave

electric field, P is the microwave power, ~ is the

propagation constant for propagation along the z-axis

of the slow-wave structure, and m denotes-the m-th

order spatial harmonic component of the field.

Estimates of Zint are usually done relatively crudely,

since the space harmonics are rapidly-varying

functions of x and y, the beam density distribution is

not w-en known, and the resultant amplification is

sensitive to a variety of other parameters of the

device anyway. In the present work, the interaction

impedance can be determined with unaccustomed

accuracy because the fields themselves are accurately

known. This permits us to study some of the

assumptions often made in this aspect of CFA work

and to examine the effects on the strength and

character of the interaction of various structural

modifications. Examples illustrating the details of

these results will be presented. We find that a

representative mean value of Zint for rn = O at the

surface is near 50 ohms in the portion of the pass-

band contemplated, for the meander line of a GFA

design currently under development.

A further capability of the theory is that

the dielectric-vacuum and dielectric-metal

interfaces accurately even when they involve

blocks, slots, etc. , as are often required in

of treating

steps,

C FA

applications where beam-dynamic and thermal

considerations dominate the design. This is done

by a method in which the Green’s function is

determined in two steps. First, a “vacuum” Green’s

function is generated, in which the dielectric substrate

is treated as if its dielectric constant were unity.

Second, this function is employed in an iterative

process to solve for the kernel of an integral equation

expressing the electric displacement boundary

condition at the dielectric interface.

Conclusion

Beyond the immediate objective, namely, to

obtain realistic analytical data for experimental

comparison anddesign guidance on a class of crossed-

field amplifier circuits, the formulation presented

here illustrates how a technique for systematic

accounting of the complex fields in periodic media,

in any wavelength range of interest, can be carried

out by a combination of logical, analytical, and

numerical methods.
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Figure 1. Dimensions and coordinates for the

meander line, showing the unit cell.
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Figure 2. An infinite array of parallel strips, with

respect to which the symmetry-adapted

normal modes of propagation are defined.
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Figure 4. Dispersion diagram for the micro strip

meander line. The points and horizontal

dashed bars are observed phases and

stop bands, respectively. The slanting

dashed lines represent the limiting case

of uncoupled meander lines.
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Figure 5. Input impedance function Zin for the

micro strip meander line. The three bars

in the center of the figure indicate for

comparison the characteristic impedances

of a coupled pair of lines of the same

configuration as that of the meander line
90 ~l=io 270 360 unit cell (upper and lower bars) and of a

single line (center bar).
+ (degrees per cell)

Figure 3. Effective dielectric constant functions

Keff of the normal modes.
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